Models of protein-ligand crystal structures: trust, but verify

نویسندگان

  • Marc C. Deller
  • Bernhard Rupp
چکیده

X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternate states of proteins revealed by detailed energy landscape mapping.

What conformations do protein molecules populate in solution? Crystallography provides a high-resolution description of protein structure in the crystal environment, while NMR describes structure in solution but using less data. NMR structures display more variability, but is this because crystal contacts are absent or because of fewer data constraints? Here we report unexpected insight into th...

متن کامل

The use of small-molecule structures to complement protein–ligand crystal structures in drug discovery

Many ligand-discovery stories tell of the use of structures of protein-ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and th...

متن کامل

Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations

ABSTRACT Pharmacophore modeling is a widely used technique in computer-aided drug discovery. Structure-based pharmacophore models of a ligand in complex with a protein have proven to be useful for supporting in silico hit discovery, hit to lead expansion, and lead optimization. As a structure-based approach it depends on the correct interpretation of ligand-protein interactions. There are legit...

متن کامل

BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures.

We developed BSP-SLIM, a new method for ligand-protein blind docking using low-resolution protein structures. For a given sequence, protein structures are first predicted by I-TASSER; putative ligand binding sites are transferred from holo-template structures which are analogous to the I-TASSER models; ligand-protein docking conformations are then constructed by shape and chemical match of liga...

متن کامل

Sequence annotation of nuclear receptor ligand-binding domains by automated homology modeling.

The quality of three-dimensional homology models derived from protein sequences provides an independent measure of the suitability of a protein sequence for a certain fold. We have used automated homology modeling and model assessment tools to identify putative nuclear hormone receptor ligand-binding domains in the genome of Caenorhabditis elegans. Our results indicate that the availability of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computer-aided molecular design

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2015